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SUMMARY

This report presents a demonstration of the usefulness of
the ATLAS system in performing three-dimensional elastic stress
analysis of a turbine blade.

Modeling details for a shrouded uncooled turbine blade are
outlined and program execution and data management techniques
are discussed.

It was concluded that three-dimensional elastic stress
analysis provides an accurate means of predicting stresses in
a complex structure. However, high computer costs require that
this method of stress analysis be used withi discretion. Areas
for further study are suggested.

0i
I,1

0

al

REV SYM wAAAFA o, D6-42735
- 4PAGE I _



1.0 INTRODUCTIO'l

Assessment of the state of stress in solid structures has
long been the goal of stress analysts. However, throe-OimensionzA
stress methods have been limited, for the most par , tn
photoelastic methods which provide good results for a vo_-: limited
number of loading types. For example, analysis of tlrbine blades
has been limited to centrifugal loadinq because thermal and
aerodynamic loadings have been difficult or imossible to sirulate
ay photoelastic methods.

In recent years the stiffness method of finite element
stress analysis has provided a solution for three-diriensiona
stress analysis through the isoparametric solid elermnt (ref.
1). Since 1968 there has been a proliferation of finite element
programs, both public and proprietary, which incorporate some
form of the three-dimensional isoparaetric solid element. T.he
ATLAS System (ref. 2) is one such program, available to government
agencies and certain of their contractors, which provides the
user with a highly versatile isoparametric brick family.

However, users soon found that something more than an
accurate finite element was necessary for a successful three-
dimensional stress analysis. Even relatively simple three-
dimensional models can produce very large and costly computational
problems which may exceed the capacity of the largest computers.
It became evident that an efficient data management system and
substructuring' capability were as important as the finite element
itself for a successful three-dimensional stress analysis.

This study was undertaken to demonstrate the usefulness
of the ATLAS system in executing an elastic stress analysis of
a turbine blade. The problem selected required use of the
system's isoparametric element family, various loading options,
data management features, and automated substructuring capability,
all of which are essential for successful execution of ioclerate
to large three-dimensional stress analyses.

The authors gratefully acknowledge the support of the program
manager, M. Aarnes and of the ATLAS Staff in accomplishinni the
goals of this document.

IL
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2.0 THE ATLAS SYSTEM

ATLAS is an integrated structural analysis and design svsterr
operational on the Control Data Corporation (CDC) 6600/C"'BER
computers. It is a modular system of computer codes integrated
within a common executive and data base framework. The systerr
has a broad scope in that its analytical capabilities support
many different out related aeroelastic technological disciplines.
However, in this report, ATLAS will be discussed only in its
role as a three-dimensional elastic stress analysis tool.

The element selected for this demonstration is the
isoparameter brick element. The ATLAS brick element famil- is
composed of four major elemeents with orthotropic material
properties. They are the linear, quadratic, cubic and oiartic
bricks. That is geometry, displacement, thermal strains, and
pressures are expressed as linear through quartic polynomials
along the edges of the brick. Each element is defined by 3
corner nodes and 12 edges each of which may have up to 3
intermediate nodes. Nodes are allowed 3 translator, dearees
of freedom.

Loadings provided by ATLAS include any or all of the
follouing:

a) Inertia loads

b) Point loads

c) Pressure loads

d) Thermal loads

e) Specified displacements

Centrifugal loading, which is a special case of the inertia
loading option, is accomplished by defining a rotation vector
which provides both direction and angular velocity of the
rotation. The number of load cases in a given analysis is limited
only by the capacity of the computer system used.

Three types of coordinate systems are available to the user.
These are the rectangular, cylindrical anO spherical systems.
Any nimber of each may be used within a problem to define both
input and analysis reference frames. Thus, complex gecmetrics
and supported and specified boundary conditions may be
conveniently selected by the user in order to simulate ncarly
any real situation.

Element stresses in terms of 3 normal and 3 shear stresses
0
0 are computed for the global coordinate system at the element

centroid. The user may also request that stress at the nodes
be printed instead of or in addition to the centroidal stresses.

qJ
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Computational module control is maintained by the u;e- via
a concise technically oriented language which may include a
FORTRAN program used for auxiliary processing.

The reader is referred to the ATLAS Users Manual (ref. 2)
for a more detailed description of the system.

Kl
0i
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3.0 THE BLADE MODEL

This section describes the geoetric and loading models
generated for a shrouded, uncooled power turhine blade. Blade

geometry, metal temperature, and gas pressures were provided

by Lycoming Division of the AVCO Corporation. The subject blade
had previously undergone a partial three-dimensional analysis
in which a portion of the blade was modeled three-dimensionally
and the remainder modeled two-dirensionally. It was the goal
of the current study to provide a more detailed, fully three-
dimensional stress analysis of the blade and thereby demonstrate
the usefulness of the ATLAS system in three-0iiiensional stress
analysis.

The original three-dimensional model of the blade included
that portion of the blade from .5 inch above the platform down
through the first serration of the fir tree. !orce boundary
conditions from a two-dimensional model were applied to the to'
of the model and support boundary conditions were applied to
the fir tree.

The current model was built from the original by adding
the remainder of the fir tree, the airfoil, and the tip shroud.
Element corner node numbers from the original three-dimensional
model were retained in the updated model, but the element
definition of the oriqinal section was upgraded from 20 or 24
node bricks to 32 node 1,ricks. The purpose of the refinement
was to more accurately determine the stresses in the area of
the blade root fillet. The addition to the fir tree was modeled
with 32 node bricKs and the airfoil and tip shroud were -todeled
with 8 node bricks. The full blade model was then substructured
as shown in figure 3.1

The decision to use substructures was made at the cutset
in order to allow for subsequent modifications to boundary
conditions and tip loads. However, it was fouand during .I-ecution
of the problem that substructuring would have been necessary
in any case to reduce the problem size to fit the production
configuration of the Boeing Computer Services (BCS) , CDC 6600
computer. That problem is discussed in more detail in section
4.0.

Each substructure was defined by a corresponding stiffness
data set containing nodal point coordinates and element
definitions. The substructure numbers and data set numbers
together with other pertinent data ar- given in table 3.1.

4

9
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Substructure 11

Figure 3.1 Turbine Blade Geometric Model
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Table 3.1 Substructure Descrioti n

Substructure number 11 13 14 ].5 16 21
Stiffness data set 1 3 4 5 --

m'umber of nodes 1076 219 57 895 953 315
luimher of elements 92 81 23 66 90 --

:4odes per element 32 8 8 32 32 --

Retained nodes 145 46 76 269 154 --
Free Freedoms 2616 510 120 1869 2386 943
Ptained freedoms 435 138 48 807 462 --

Supported freedoms 132 0 2 0 --

Average half bandwidth 848 86 76 1281 732 531

'aps of each substructure together with element corn;er node
numbers are given in figures 3.2 and 3.4-3.6. Element numbers
in data set 1 were generated by addinq the twJo least significant
digits from one of the node numbers on the element upper face
to an integer equal to or greater than 4200. This rLetho< :ay
be demonstrated y observing the fir tree section map shown in
figure 3.3 in conjunction with figure 3.2. One may obtai. any
of the element numbers in data set 1 by using the prefixes qiven
in figure 3.2 and adding the integers found encircled in ficgure
3.3. Elenent numbers for data sets 5 and 6 correspond c:c a node
number usually found in the second quaL cani- of the element upper
face.

The stiffness data set information was checked for accuracy
via the plot postprocessors found in the -.TLtS syste'. Additional
checking for some of the more complex geometries was done on
Vector General 3-D Vector scope driven by a FDP 11/45 ccnputer.

The global coordinate system used for nodal poiit deirition
was a right-hand rectangular coordinate system with the ::-aixis
as the center line of the engine (positive aft), the y-axis as
the tangential direction, and the z-axis as the blade ;tackinq
axis. 2wo additional coordinate systems were used for parposes
of boundary condition specifications. The x-axis of the sste's
lay parallel to the longitudinal axis of the fir tree (positive
aft). The -ressure side system was rotated 450 about its x-axis,
while the suction side system was rotated -450 about ius x-axis.
These systems appear in the ATLAS coordinate system definitions
as ROOTPS and ROOTSS respectively, and are shown in fiq;ure 3.8.
Note that the Lir tree lands were free to slide parallel tc the
contact surface. io shearing forces were allowed.

The tip shroud boundary condition allowed translations in
all directions but no rotation about the global z-axis. This
was accomplished by attaching 8 massless beans with stiffness
properties defined in the x-y plane only from each of ,he corners

o of the tip shroud to 2 nodal points on the upper and lowrw
surfaces of the tip shroud at the intersection with the z-axis
as shown in figure 3.9. The 2 nodal points were constrained
against rotation about the z-axis.

0 t
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Four basic loadcases were considered in this analysis.
They were centrifugal loads, thermal loads, aerodynamic loads,
and a tip rub load. In addition to the basic loadinas, various
combinations of the basic loads were considered.

Centrifugal loads were generated by an external data
generator since the ATLAS inertia loading capability was not
operational at the time of this analysis. The loads generated
were due to rotation at 16,000 rpm around the global x-axis and
were input to the ATLAS system as external nodal forces.

The metal temperatures provided by Lycoming are shown in
table 3.2. All temperatures input to the program were
interpolated from the Lycoming data by a computer program in
order to obtain the necessary accuracy for the fine element nvsh.

Table 3.2 Temperature vs. Z--Coordinate

Temperature, F Z-Coordinate, Inches
1145 4.00
1145 4.95
1145 5.00
1150 5.20
1170 5.70
1192 6.00
1240 6.50
1285 7.00
1323 7.50
1354 8.00
1367 8.50
1362 9.00
1325 9.50

Aerodynamic pressure loads were also provided by Lycominq
and are given in table 3.3. Pressure loads were computed as
a function of chord length and Z-coordinate and input to the
program as element surface pressure loads.

The tip rub load was assumed to be 50 pounds acting in the
negative tangential direction at the tip shroud.

0
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A al . ~ ~ 7ld rsue

Z=5.13 Inches

Percent Pressure, psi
Chord Pressure Side Suction Side

0 17.87 17.87
10 15.11 12.54
20 15.20 12.03
30 15.26 11.95
40 15.26 12.02
50 15.26 12.09
60 15.01 11.99
70 14.90 11.97
80 14.79 12.18
90 14.59 12.78

100 17.87 17.87

Table 3.3 Blade Pressures (Continued)

Z=7.30 Inches
Percent Pressure, psi
Chord Pressure Side Suction Side

0 19.90 19.90
10 18.51 15.37
20 18.44 14.75
30 18.32 13.95
40 17.95 12.68
50 17.71 11.83
60 17.61 11.52
70 17.41 11.75
80 17.01 12.37
90 16.33 13.53

100 19.90 19.90

Table 3. 3 Blade Pressures (Concluded)

Z=9.04 Inches
Percent Pressure, psi
Chord Pressure Side Suction Side

0 23.28 23.28
10 19.57 14.31
20 19.19 13.66
30 19.10 12.65
40 19.15 11.74

50 19.03 11.20
60 18.76 10.99
70 18.18 11.36
80 17.41 11.70
90 16.82 12.85

0
o 100 23.28 23.28

REV SYM NOD423
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4.0 P RDGR E)(ECUT IO'l

Execution of a stress analysis using the ATLAS System can
be as simple as inputing the words "PERYOXI STRESS." However,
large three-dimensional analyses will require more user
interaction. For those analyses requiring such interaction,
ATLAS provides a concise control languaae that allows step by
step management of the solution process. This approach was used

extensively in the execution of the demonstration problem.

The solution steps for the demonstration problem were grouped
into five logical blocks as follows:

1. Input data

2. Generate stiffness and loads matrices

3. Interact substructures

4. 3-rge and reduce substructures

5. Back substitute for displacement solutions, calculate
stresses and print out nodal point stresses.

The first three blocks were executed for all substructures
at once while the last two blocks were executed once for each
substructure except substructures 13 and 14 which were executed
together. Each of the above blocks utilized one or more ATLAS
executive statements.

It was found in the first attempt to execute the problem
that the initial substructuring arrangement contained a
substructure which produced more data than could be stored on
a single disk storage device on the production configuration
of the BCS CDC 6600. The job would have aborted due to a track
limit error. The offending substructure was broken into two
substructures, numibered 15 and 16, and, as a result of this
experience, guidelines were set up which reduced the probability
of further track limit aborts. These guidelines involved careful
data management through the use of substructuring, ATLAS executive
statements, and CDC 6600 job control cards, together with a good
understanding of the substructure's gross stiffness matrix
effective half bandwidth. The guidelines are outlined helow.

First, if the length of any one substructure data file such
as the stiffness matrix file or merge data file exceeds one-half
the capacity of the device on which it is stored, the 'roblem
size should be reduced by replacing that substructure with two

Sor more substructures whose data files fit the above criteorion.

Second, whenever possible, assign the largest data files
to different disk storage devices through CDC 6600 job control
cards. For example, restart files such as SAVFSSF should be

REV SYM NPAwo D6-42735
PAGE 17



assigned to a different disk than the files being loaded to or
from SAVESSF such as STIFRNF, etc.

Third, use the ATLAS "SAV7E MATRIX" option to separate data
files according to when they are needed in the execution process.
For example, store the element stiffness matrices and the element
stress matrices which are generated at the same time on separate
save files so that they may be loaded as needed rather than in
one large file.

Execution of the demonstration problem without substructuring
would have required up to 40 million words of disk storage space.
However, with the use of the guidelines given above, the required
disk space was reduced to about 12 million words. The maximum
length of a single file was about 3 million words which was well
within the 10 million word capacity of a single storage device.
Thus, the problem could be executed on the production
configuration of the BCS CDC 6600.

The interested reader is referred to the ATLAS control
program listings in appendix A for details of data management.

o

0
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5.0 STRESS CONTOUR PLOTS

Contour plots of the pressure and suction surface radial
stresses were made for stiffness data set 6. Plots for each
of the following loadcases are shown in figures 5.1-5.12.

a) Centrifugal force (fig. 5.1, 5.2)

b) Aerodynamic loads (fig. 5.3, 5.4)

c) ThE -ral loads (fig. 5.5, 5.6)

d) Tip rub loads (fig. 5.7, 5.8)

e) Combination of cases a-c (fig. 5.9, 5.10)

f) Combination of cases a-d (fig. 5.11, 5.12)

The periodic islands that appear in some of the plots arc
a result of the contour plotting method used. The magnitude
of the stresses at the center of those islands is correct, but
the adjacent contours are distorted as far as location is
concerned and should be judged accordingly.

g

REVSY sinsrzV No Dl6-42735 -
PAGE



R..

Stress contours, ksi

F iq i re 5 1 IPadia1 Stres. CF Load , Pre i dice

REV SYM B7~'



Leadina edge

4 5.51 R. -- 5.072 R.

=40.

5.

Stress contours, ksi

Figjure 5.? Radial Stress, CF Load, Suction Side
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Figure 5.3 Radial Stress, Aero Load, Pressure Side
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Figure 5.4 Radial Stress, Aero Load, Suction Side
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Figure 5.5 Radial Stress, Thermial Load, Pressure Side
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2 Figure 5.6 Radial Stress, Thermal Load, Suction Side
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o Figure 5.7 Radial Stress, Tip Rub Load, Pressure Side
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Figure 5.8 Radial Stress, Tip Rub Load, Suction Side
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Figure 5.9 Radial Stress, CF + Aero + Thermal Loads, Pressure Side
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Figure 5.10 Radial Stress, CF + Aero +Thermal Loads, Suction Side
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6.0 TWO- AND THREE-DIMENSIONAL ANALYSIS COMPARISONS

The subject turbine blade had undergone several earlier
analyses including a two-dimensional NASTRAN plate analysis,
a three-dimensional ATLAS analysis with force boundary conditions
provided from the NASTRAN analysis, and a full scale photoelastic
analysis. In addition to the analytical data, Lycoming test
experience provided information as to where the blade failed
under overspeed conditions. These data are compared in this
section.

Boundary conditions for the numerical analyses described
above varied widely according to the complexity of the analvsis.
The NASTRAN plate analysis boundary conditions assumed that the
airfoil was rigidly fixed at the root and constrained aqainst
rotation at the tip as shown in figure 6.1. The combination
analysis using NASTRAN and ATLAS assumed that the fir tree was
supported against radial motion at the bottom of the first land
of the fir tree and against translations and rotations along
the sides of the fir tree as shown in figure 6.2. Note that
the effects of the upper portion of the airfoil and tip constraint
were generated by NASTRAN as element forces and subsequently
input to ATLAS as nodal forces.

Boundary conditions for the photoelastic study were provided
by a real hardware disk. Since the disk material was far more
rigid than the plastic blade model, the boundary conditions for
the photoelastic study should have been very similar to those
shown in figure 3.8.

Field experience for failures due to overspeed indicated
that the most frequent point of failure was about .15 inch above
the blade platform. This location corresponds to a Z-dimension
of 5.13 inches and was used as a basis for comparisons of the
results of the three analyses mentioned above and the
demonstration problem results. Figures 6.3a and 6.3b show the
radial stresses due to centrifugal forces predicted by the four
methods (at a Z-dimension of 5.13 inches) for the pressure and
suction surfaces of the blade respectively.

The NASTRAN 2-D analysis predicts average stresses well,
but it does not follow the local stress shape displayed 1y the
photoelastic model well. The combination 3-T and 2-D analysis
seems to have similar characteristics to the 2-D run only greatly
amplified and is the farthest from the photoelastic results.
The force boundary condition is thought to be a major contributor
to this behavior. The fully 3-D ATLAS analysis has very similar
shape characteristics to the photoelastic nalysis, alfho-qh
the amplitudes do not match exactly.

0
The unknowns in the photoelastic study probably outweigh

those in the ATLAS analysis. For example, the photoelastic
i material has a modulus to density ratio of 107 while the 713C
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Figure 6.1 Boundary Conditions for NASTRAN 2-D Analysis

Boundary forces from NASTRAN

Figure 6.2 Boundary Conditions for ATLAS 3-D + NASTRAN 2-D Analysis
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blade material has a ratio of 108. Thus, the nonlinear stiffen-n
effects produced by the centrifugal forces should -Produce
different deflection patterns and different stresses in .jcA
model. There is also the possibility that the photoelastic rode3
underwent local yielding at the point of stress concentratioii
which would change the stress picture considerably. It is
interesting to note that if yielding had taken place in the
region of 60-80% chord on the pressure side of the piiotoelastic
model the stress on the suction side, being beJo the elastic
limit, would have increased due to the tratsfer of load. If
one apPlie'.; this hypothesis to the ATLAS 3-D data in figure 6.3,
the resulting curve shapes would be nearly identical to the
photoelastic curves.

A comparison of the ATLAS 3-D, the photoelastic, and test
experience data is shown in figure 6.4. Assuming that the
overspeed failures were due to centrifuoal force ovcrload
exclusive]v, the ATLAS 3-D analysis comes much closer to
predicting the failure point than the )hotoelastic study.

It would appear from the results of the ;e comparisons and
other relatod experience with the three-dimensional iso ar aieti:ic
elements that they provide the most accurate and most vorsati]e
three-dimensional method of stress analysis available. tI o
analysis of any geometry should be feasible through the use of
suLstructuring, and the accuracy of the results shoujd e Jimite1

only Iby the analyst's ingenuity and experience and the ccraputcr
resources available.

o

£
0
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7.0 CONCLUSIONJS AND RECOmeNDATIONS

The following conclusions are a result of this study:

1. ATLAS provides an accurate three-dimensional elastic
stress analysis capability for analyzing complex
structures such as turbine blades.

2. Efficient management of very large volumes of data
is as important to successful 3-D analysis as the
element itself.

3. Substructuring is essential to three-dimensional
analysis of complex structures such as turbine blades
and disks.

The following are recommended areas for further study:

1. A nonlinear analysis using an iterative displacement
and/or differential stiffness approach should be made
to determine the effect of centrifugal stiffeninq on
local stresses.

2. Plastic analyses through the use of substructuring
and piecewise linear analysis should be explored.

3. Known stress concentrators such as fillets should b,,

modeled with different order bricks and results
tabulated. This could be accomplished by modeling
the concentrator configurations documented by Roark
(ref. 3) or Peterson (ref. 4).

4. Boundary condition options which allow tensilo or
compressive reactions but not bota should be tried
in modeling fir trees in order to study the effects
of loss of contact along the lands.

Z
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APPENDIX A--ATLAS OuTPUT'

This appendix contains a complete listing of the AT2LAS
execution of the demonstration problem. It is intended to provide
detailed information for those wishing to carry on further studies
of the demonstration blade and to provide a general guidce for
anyone intending to do three-dimensional stress analysis using
the ATLAS system.

The microfiche file at the end of this appendix is organized
in blocks according to the ATLAS executive modules used, and
corresponds to the following outline:

A.1 Read input

A.2 Execution of STIFFNESS and LOADS modules and printing
of stiffness data

A.3 Execution of INTERACT preprocessor and printing of
interact data

A.4 Execution of SS-MERGE and SS-REDUCE procedures to
perform matrix merge and reduce operations, and SS-
PARTITION procedure to partition the highest level
substructure

A.5 Execution of SS-BACK procedures and STRESS and OUTPUT
modules and the nodal stress output routine

Program execution times and computer resource units are
given in table A.1 for the major blocks.

£
0

0
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Table A.1 Computation Time and Resources*

Substructure, !umber
11 13,14

Procedure Time, sec CRUs Time, sec CRUs

CF Loads -- 54 22

Stiffness/Loads 1696 278 39 25

Herge/Reduce 3673 998 85 29

Backsub/Stress 973 254 220 63

Totals 6342 1584 384 139

Table A.1 Computation Time and Resources* (Continued)

Substructure Ni umher
15 16

Procedure Time, sec CRUs Time, sec CRUs

CF Loads -- 46 -- 46
Stiffness/Loads 1149 192 1551 254

Ilerge/Reduce 6667 2026 3034 778

Backsub/Stress 761 214 854 199
Totals 3577 2478 5439 1277

Table A.1 Computation Time and Resources* (Concluded)

Substructure umber
21

Procedure Time, sec CRUs
Merge/Reduce/Partition 802 156

Problem Totals - 21554 seconds and 5634 CRU's.

*Dollar costs are directly proportional to computer resource units.

The total input card count for the demonstration problhm
was approximately 10,900 cards.

[
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A.1I Input vredx U->

A.1 Input (Continued) Appendix [)6 -4 27-

A.2 Stiffness and Loads -- SS 11 Appendix [16-4('7"5

A.2 Stiffness and Loads -- SS 13, 14 Appendix D6-42735

A.2 Stiffness and Loads -- SS 15 Appendix D6-42735

A.2 Stiffness and Loads SS 5 16 Appendix D6-4L735

A.3 Interact Appendix D6-42735 10

A.3 Interact'(Continued) Appendix D6-42735 11

A.3 Interact (Continued) Appendix D6-42735 1L

A.4 Merge and Reduce 55 11 Appendix D6-42735 13

A."Merge and Reduce SS 13, 14 Appendix D6-42735

A.4 Merge and Reduce SS 15 Appendix D6-42735 15

A.4 Merge and Reduce SS 16 Appendix D6-42735 17

A.4 rierge and Reduce SS 21 Appendix D6-42735 18)
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A.5 B S ..pedx 6.3.

A.5 Back Sub/Stress/Output 5. 11 Appendix D6-42735 i9

A.5 Back Sub/Stress/Output SS 11 Appendix D6- 42/3

A.5 Back Sub/Stress/Output SS 11 Appendix D6-4275 .

A.5 Back Sub/Stress/Output SS 13, 14 Appendix D6-42735 2(

rA.5 Back Sub/Stress/Output SS 13 Appendix 06-4273, 31

A.5 Back Sub/Stress/Output SS 15 Appendix D6-4213 1,

A.5 Back Sub/Stress/Output SS 15 Appendix D6-42735 i5
ASSi

A.5 Back Sub/Stress/Output SS 16 Appendix D6-42735 36

A.5 Back Sub/Stress/Output SS 16 Appendix 6-42735 38

A.5 Back Sub/Stress/Output SS 16 Appendix D6-42735 4G

A.5 Back Sub/Stress/Output SS 16 Appendix D6-42735 42I

A.5 Back Sub/Stress/Output SS 16 Appendix D6-42735 44

Pe-42735

Pae 42m
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APPENDIX B--STRESS CONTOUR PLOTS

This appendix contains Mises-lencky equivalent stress contour
plots for stiffness data sets 3 and 6. They are recorded for
both pressure and suction surfaces of the blade for the followino
loadcases:

a) Centrifugal force

b) Aerodynamic loads

c) Thermal loads

d) Tip rub loads

e) Combination of cases a-c

f) Combination of cases a-d

£
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TJ Plot region

5.512 R. 5.072 R.

Stress contours, ksi

Figure B.1 Equivalent Stress, CF Load, Pressure Side, Set 6

PLV SYM D-23
iA - 44



"nip,- ~ -

Leading edge

3Plot region

5.512 R. 5.072 R.

Stress contours, ksi

Figure B.2 Equivalent Stress, CF Load, Suction Side, Set 6
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Stress contours, ksi

Figure B.3 Equivalent Stress, Aero Load, Pressure Side, Set 6
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Stress contours, ksi

* Figure 8.4 Equivalent Stress, Aero Load, Suction Side, )ft 6
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Stress contours, ksi

Figuffe B.5 Equivalent Stress, Thermal Load, Pressure Side. Set 6
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Stress contours, ksi

Figure B.6 Equivalent Stress, Thermal Load, Suction Side, Set 6
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Figure B.7 Equivalent Stress, Tip Rub Load, Pressure Side, Set 6
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-" Figure B.8 Equivalent Stress, Tip Rub Load, Suction Side, Set 6

R(;V SYM 
6 i 6 42 73 5

r A .



Leading edge
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Stress contours, ksi

Figure B.9 Equivalent Stress, CF + Thermal + Aero Loads, Pressurf Side, Set 6
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Stress contours, ksi

::Figure B.10 Equivalent Stress, CF + Thermal + Aero Loads, Suction Side, Set 6
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i qure B.11 Equivalent Stress, CF + Aero + Thermal + Rub Loads, Presswe Side, Set 6
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Stress contours, ksi

SFigure B.12 Equivalent Stress, CF + Aero + Thermal + Rub Loads, Suction Side. Set 6
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Figure B.13 Equivalent Stress, CF Load, Pressure Side, Set 3
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Figure B.14 Equivalent Stress, 
CF Load, Suction 

Side, Set 3
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Figure 5.17 Equivalent Stress, Thermal Load, Pressure Side, Set-3
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Figure B.18 Equivalent Stress, Thermal Load, Suction Side, Set 3
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a Figure B.19 Equivalent Stress , Tin Ruh Load, Pressure Side, Set 3j
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Figure B.21 Equivalent Stress, CF +Aero +Thermal Loads, Pressure Side, Set 3
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Sigure 8.23 Equivalent Stress, CF + Aero + Thermal + Rub Load, Pressure Side. Set 3
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